Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency.
نویسندگان
چکیده
Zinc is an essential micronutrient for all living organisms. When facing a shortage in zinc supply, plants adapt by enhancing the zinc uptake capacity. The molecular regulators controlling this adaptation are not known. We present the identification of two closely related members of the Arabidopsis thaliana basic-region leucine-zipper (bZIP) transcription factor gene family, bZIP19 and bZIP23, that regulate the adaptation to low zinc supply. They were identified, in a yeast-one-hybrid screening, to associate to promoter regions of the zinc deficiency-induced ZIP4 gene of the Zrt- and Irt-related protein (ZIP) family of metal transporters. Although mutation of only one of the bZIP genes hardly affects plants, we show that the bzip19 bzip23 double mutant is hypersensitive to zinc deficiency. Unlike the wild type, the bzip19 bzip23 mutant is unable to induce the expression of a small set of genes that constitutes the primary response to zinc deficiency, comprising additional ZIP metal transporter genes. This set of target genes is characterized by the presence of one or more copies of a 10-bp imperfect palindrome in their promoter region, to which both bZIP proteins can bind. The bZIP19 and bZIP23 transcription factors, their target genes, and the characteristic cis zinc deficiency response elements they can bind to are conserved in higher plants. These findings are a significant step forward to unravel the molecular mechanism of zinc homeostasis in plants, allowing the improvement of zinc bio-fortification to alleviate human nutrition problems and phytoremediation strategies to clean contaminated soils.
منابع مشابه
Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply.
Deficiency of the micronutrient zinc is a widespread condition in agricultural soils, causing a negative impact on crop quality and yield. Nevertheless, there is an insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition [1]. This information should contribute to the development of plant-based solutions with improved nutrient-...
متن کاملF‐group bZIPs in barley—a role in Zn deficiency
Zinc (Zn) deficiency negatively impacts the development and health of plants and affects crop yield. When experiencing low Zn, plants undergo an adaptive response to maintain Zn homeostasis. We provide further evidence for the role of F-group transcription factors, AtbZIP19 and AtbZIP23, in responding to Zn deficiency in Arabidopsis and demonstrate the sensitivity and specificity of this respon...
متن کاملThe role of ZIP transporters and group F bZIP transcription factors in the Zn‐deficiency response of wheat (Triticum aestivum)
Understanding the molecular basis of zinc (Zn) uptake and transport in staple cereal crops is critical for improving both Zn content and tolerance to low-Zn soils. This study demonstrates the importance of group F bZIP transcription factors and ZIP transporters in responses to Zn deficiency in wheat (Triticum aestivum). Seven group F TabZIP genes and 14 ZIPs with homeologs were identified in he...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملTwo bHLH Transcription Factors, bHLH34 and bHLH104, Regulate Iron Homeostasis in Arabidopsis thaliana.
The regulation of iron (Fe) homeostasis is critical for plant survival. Although the systems responsible for the reduction, uptake, and translocation of Fe have been described, the molecular mechanism by which plants sense Fe status and coordinate the expression of Fe deficiency-responsive genes is largely unknown. Here, we report that two basic helix-loop-helix-type transcription factors, bHLH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 22 شماره
صفحات -
تاریخ انتشار 2010